

TRUST EPC South benchmarking and assessment tools for energy efficiency investments

Professor Theocharis Tsoutsos

Renewable and Sustainable Energy Systems Lab School of Environmental Engineering Technical University of Crete

INTRODUCTION

GREPCon

GREPCon - Green Rating for Energy Performance Contracts

A service that provides a standardized and certified approach to the technical and financial assessment of EPC and other energy efficiency projects, fostering a common understanding of project risks and benefits among all investment stakeholders.

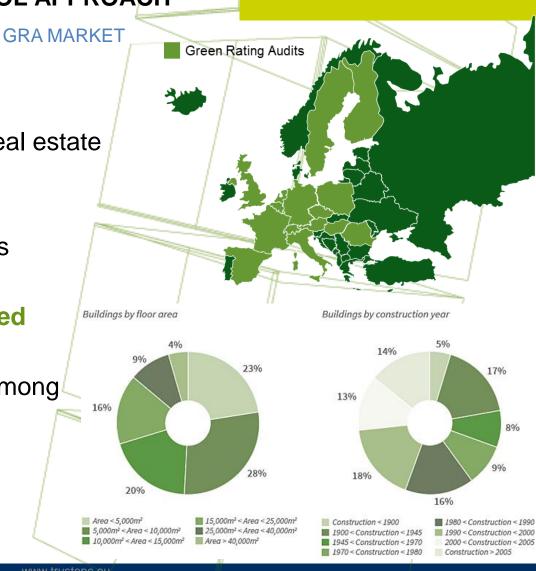
GREPCon has been developed within the Trust EPC South European initiative, building on Bureau Veritas' Green Rating™ methodology. It is being tested on 40+ pilot projects in 6 countries (Croatia, France, Greece, Italy, Portugal and Spain)

Supported building types:

HOSPITALITY HEALTHCARE

SCHOOLS

SPORT CENTRES



TOOL APPROACH

 More than 650 properties with
 10 million sqm of commercial real estate assessed in Europe

 Office, logistics and retail assets in more than 100 cities in more than 14 countries rated

 20 participating companies among leading European property and auditing companies

GREPCon TOOL

THE APPROACH

Identification of standardised energy efficiency measures scenarios

Building and Equipment Technical Models

Contific

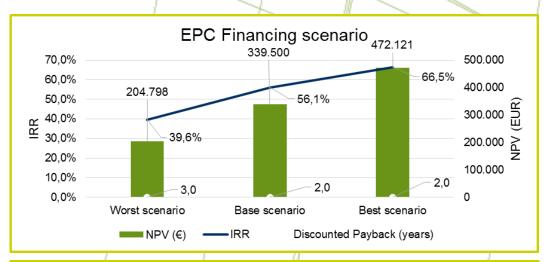
Independent EPC

Assessment and

Verification

Consumption and Costs Data

Financial data


Financial Assessment

Feasibility assessment
Profitability projection
Risk assessment

RISK ASSESSMENT SCENARIOS

- In order to allow for risk assessment, each financial scenario is considered under three scenarios: **best**, **base** and **worst case**
- Such cases, utilising a Ceteris Paribus analysis, take into account 7 different factors that can influence the cash flows of the investment such as income, costs, inflation and interest rates
- For instance, the worst case takes into account the possibility that the generated incomes are lower than forecast or that the interest rates are higher than initially assumed
- The best case works on opposite assumptions

	Best	Base	Worst
Income - energy and water savings	+	=	/ -
Income - energy production	+	=	_
Investment overcost	N/A	=	/ +
O&M overcost	N/A	=	+
Energy inflation rate	+		-
General inflation rate	+	= 7	-
Interest rate	-	= /	+

Legend:

+: increase =: unchanged -: decrease N/A: non-applicable

PROJECT RATING

- For each financial scenario, based on the analysis discussed in the previous slide, the GREPCon tool elaborates its rating based on a 5 levels scale, outlined in the table below.
- A standard label is also presented to the user, graphically representing the rating with the labelling
- The environmental labelling will be available once a sufficient number of pilots within the same building category are assessed.

GREPCon PROJECT RATING								
xxx								
Energy Perfor Pot	mance Co ential	ntract						
Financial savings:	241.609	€/year						
Energy savings:	1.990.560	kWh/year						
Energy savings percentage:	23,62	%						
Carbon savings:	682.501	kgCO₂/year						
Investment:	1.234.660	€						
Equity percentage:	20	%						
IRR:	29,0	%						
NPV:	260.727	€						
avg. DSCR:	1,9							
min. DSCR:	1,4							
Discounted payback:	4	years						

LABEL	DESCRIPTION
A	High Profitability, low likelihood of bad performance, very robust structure, short payback time, with a high level of security in the loan
В	Medium-High Profitability, medium-low likelihood of bad performance, medium-short payback time, with a medium-high level of security in the loan
С	Medium Profitability, medium likelihood of bad performance, medium payback time, with a medium level of security in the financing
D	Medium-Low Profitability, medium-high likelihood of bad performance, medium-long payback time, with a medium-low level of security in the financing
E	Low Profitability, high likelihood of bad performance, long payback time, with a low level of security in the financing

INDICATIVELY EXPLOITATION STRATEGY

CLIENT

Project opportunity

AUDITOR

- Auditor must be accredited with GREPCon
- Auditor sets a price freely
- GREPCon assessment
- Auditor must pay a QA fee

AUDITOR

 gets the GREPCon certificate and the final report

CLIENT

 End of the assessment

LOCAL QUALITY CONTROL BODY

- It certifies that the project meets with pre-defined quality requirements
- Provision of a quality certificate – GREPCon stamp

BUREAU VERITAS

 Global projects database

INTRODUCTION

Why GREPCon Tool? What is different?

- Provides a standardized approach to calculation of energy saving measures based on Green Rating methodology.
- Able to calculate the cross-effects between the selected energy saving measures and their economic impact.
- Comparable results, trusted by the market and financial institutions.
- Provides comparability of project on pan-European scale, adding further levels of confidence to all aspects of setting up an Energy Performance Contract (EPC).

Source: Trust EPC South, EEEIG

INTRODUCTION

Why this is different from other tools available?

The tool is different, because currently, there is no Tool to standardize Energy Performance Contracting (EPC) technical calculations, put them under a common framework and feed them all into a fully operational tool, which is designed to be used by accredited experts and to provide fully comparable results. Regardless of the building; a client, energy service company (ESCO) or bank is looking at Energy Performance Contracting.

TOOL APPROACH

GREEN RATING™ METHODOLOGY

ACTUAL

Covers the building as it is, with its operation and tenants' behavior

USER BUILDING

INTRINSIC

Related to building design, equipment and physical provisions

Four levels of performance

ACTUAL

POTENTIAL ACTUAL

INTRINSIC

POTENTIAL INTRINSIC

POTENTIAL ACTUAL

Achievable through implementation of operational and behavioural recommendations

POTENTIAL INTRINSIC

Achievable through implementation of tech. recommendations covering the building design & equipment

TOOL APPROACH

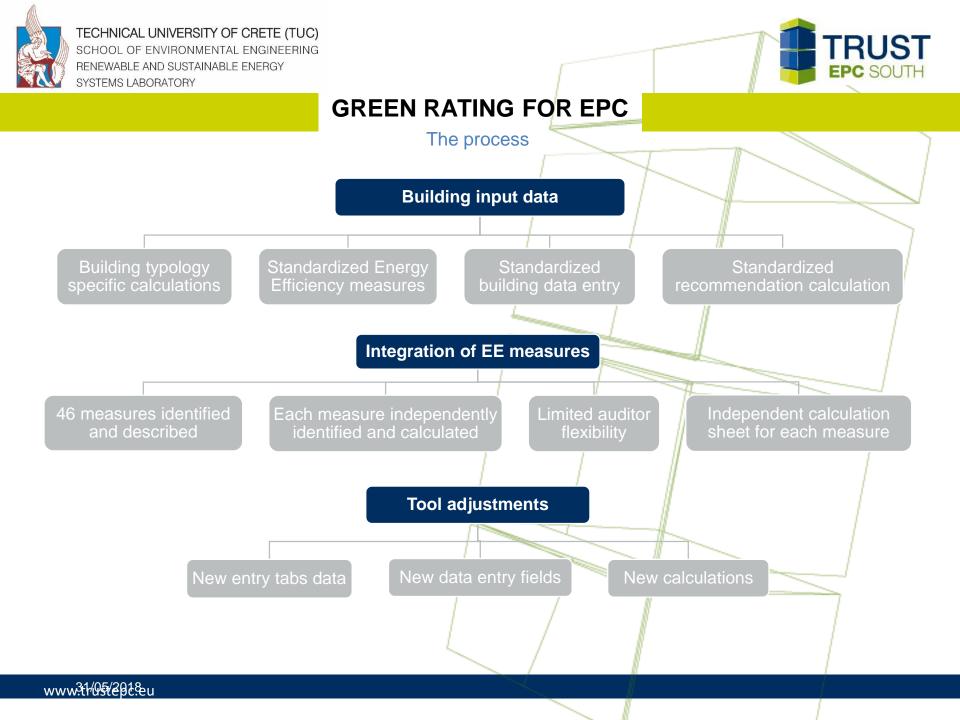
KEY INDICATORS

ENERGY: bills, modelling, conventional scenario

CARBON: Energy Indicator

WATER bills, modelling, conventional scenario

TRANSPORT questionnaires (interviews and audit)


WASTE questionnaires (interviews and audit)

WELLBEING questionnaires (interviews and audit)

Quantitative Indicators

Qualitative Indicators

INTERFACE

GREPCon - AUDIT TOOL v1.4.4 - REPORTING IN							
* GA *	GREPCOII - AODI	ENGLISH	KIINGIN				
Building Name *		Building code * #N/A	00000				
Building Type *	Office	Visit Date *					
Green Rating Details *			<u> </u>				
Client Company*		Auditing Company *					
Client First Name*		Auditor First Name *					
Client Last Name*		Auditor Last Name *					
Client E-Mail*		Auditor E-Mail*					
Client Address*		Auditor Phone No.*					
Client City*							
Client Country*							
		Green Rating Audit					
Name		Function	Company				
	Conoral build	ing information					
	Address of site*	ing information					
	City*						
	Country*						
	Zip code* Gross Internal Area (m²)*						
	Area of reference from modelling (m²)*						
	Areas excluded from modelling*						
	Year of construction (YYYY) *						

INTERFACE

GENERAL INFORMATION - Office SCHEME

Building Occupancy Information

Number of occupiers (staff)*	
Vacancy during audit (%)*	
Number of opening weeks per year*	
Average workers per day (% of occupiers)*	

WHOLE BUILDING

Please complete this schedule *

Time slot	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
0-01h	0%	0%	0%	0%	0%	0%	0%
1-2 h	0%	0%	0%	0%	0%	0%	0%
2-3 h	0%	0%	0%	0%	0%	0%	0%
3-4 h	0%	0%	0%	0%	0%	0%	0%
4-5 h	0%	0%	0%	0%	0%	0%	0%
5-6 h	0%	0%	0%	0%	0%	0%	0%
6-7 h	0%	0%	0%	0%	0%	0%	0%
7-8 h	50%	10%	10%	10%	10%	0%	0%
8-9 h	75%	75%	75%	75%	75%	10%	0%
9-10 h	90%	100%	100%	100%	100%	10%	0%
10-11 h	90%	100%	100%	100%	100%	10%	0%
11-12 h	80%	100%	100%	100%	100%	10%	0%
12-13 h	80%	75%	75%	75%	75%	0%	0%
13-14 h	80%	75%	75%	75%	75%	0%	0%
14-15 h	45%	50%	50%	50%	50%	0%	0%
15-16 h	45%	75%	75%	75%	75%	0%	0%
16-17 h	60%	100%	100%	100%	100%	0%	0%
17-18 h	60%	100%	100%	100%	100%	0%	0%
18-19 h	60%	75%	75%	75%	75%	0%	0%
19-20 h	30%	75%	75%	75%	75%	0%	0%
20-21 h	20%	10%	10%	10%	10%	0%	0%
21-22 h	0%	0%	0%	0%	0%	0%	0%
22-23 h	0%	0%	0%	0%	0%	0%	0%
23-24 h	0%	0%	0%	0%	0%	0%	0%

Results

Number of opening hours per week	74
Number of opening days per week	6
Number of opening hours per year	0
Average occupancy ratio (from schedule)	61%
Occupancy ratio (occup/m²)	

Please complete Building Occupancy Tab*

	Building
	Occupancy
Manday to Eriday	08:00
Monday to Friday	19:00
0-4	08:00
Saturday	16:00
Sunday	No
Sunday	No

Occupancy, internal heat gains and ventilation zoning

Zone numbe	DSM zone name	Zone area (m²)	Zone volume (m³)	Number of occupiers	Zone ventilated?
Zone 1					
Zone 2					
Zone 3					
Zone 4					
Zone 5					

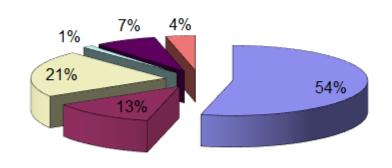
Zone checks	
Number of zones	0
Total area of defined zones	0
Reference floor area	0

AREA ZONE CHECK OK!

INTERFACE

			He	ating Plant			
	Description	Heating 1	Heating 2 (if any)	Comments	1		
	Production type*						
	Number of boilers (or other heating				1		
	equipment)*						
	Output power boiler (set) 1 (kW)*					Total heating power of system 1:	kW
	Output power boiler (set) 2 (kW)*					Total heating power of system 2:	kW /
	Output power boiler (set) 3 (kW)*						
	Output power boiler (set) 4 (kW)*						
	Input power boiler (set) 1 (kW)*						
z	Input power boiler (set) 2 (kW)*						
	Input power boiler (set) 3 (kW)*						
	Input power boiler (set) 4 (kW)*						
PRODUCTION	Boiler burner*						
2	Boiler and pipework insulation						
ğ	Manufacture date of boiler						
ĕ	Supply water temperature set-point (°C)						
п.	Carbon emission conversion factor			if district heating network		Carbon emission factor:	[0,004 - 0,99
	(kgCO ₂ /kWh) - DISTRICT HEATING*			ii diodiot flouding flottronk			[0,004 0,01
	Conversion factor between delivered and					Conversion (primary/delivered)	
	primary energy (kWhp/kWh) - DISTRICT			if district heating network		·	[0,7 - 3]
	HEATING*					•	
	Carbon emission conversion factor						
	(kgCO ₂ /kWh) - BIOMASS*			if biomass boiler			
					1		
	Conversion factor between		·	Auxiliaries	<u> </u>		
	primary energy (kWhp/kWh	<u> </u>	·	Auxiliaries			<u> </u>

	Type of Equipment	Number	Power (W)	Average running hours/day	Average running days / week	Average running weeks / year	Low mode Power (W)	VSD?	Area	Intrinsic scenario?
HEATING										
COOLING										
OTHER										


Auxiliaries = Pumps, Fans, \dots included in the scope of Intrinsic

If Equipment with Variable Speed Drive --> Power - 20%

RESULTS – Energy assesment

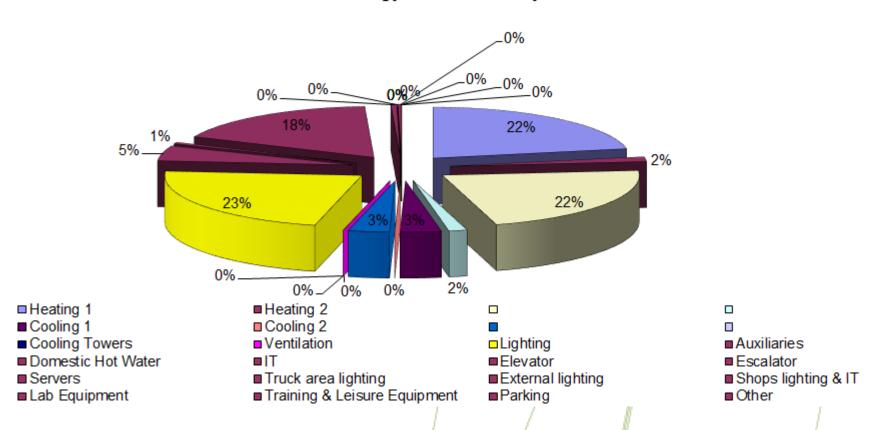
Building energy source

■ Electricity*

■ Gas*

□Fuel*

□ District Heating*


■ District Cooling*

■ Biomass*

RESULTS – Energy assesment

Intrinsic energy breakdown by use

UPDATED GR METHODOLOGY

Identification of Energy Efficiency Measures:

By the Tool, based on building data provided By the Auditor, from the default list

fault Energy Efficiency Measures				:
Below you can see all default energy afficiency measures identified by the tool.				
Please select the measures you would like to include in your calculations.				
No. Measure	Include (yes/no)	No.	Measure	Include (yes/n
1 Substitution of conventional lamps		24	Pipework and boiler insulation	
2 Replacement of lamps ballast		25	Variable frequency drives for pumps	
3 Occupancy and presence sensors		26	Heat recovery systems	
4 Photocell to dim luminous flux based on natural light		27	Water saving aerators	
5 Occupancy and presence sensors combined with photocell		28	Swimming pool heat cover	
6 Substitution of a low efficiency chiller with inverter chiller		29	Substitution or implementation of heat exchanger	
7 Substitution of a low efficiency heat pumps with high efficiency		30	Substitution of conventional boiler with condensing boiler	
8 Freecooling system		31	Substitution of the boiler burner	
9 Thermostatic valves for radiators		32	Pipework and boiler insulation	
Variable frequency drives for air handling units by CO2 sensors or		33	Variable frequency drives for pumps	
1 Variable frequency drives for extraction vents controlled by CO2 sensors or		34	Micro Cogeneration	
2 Variable frequency drives for air handling units and extraction vents		35	Geothermal heat pump	
3 Installation of biomass boiler for heating		36	Solar thermal plant	
4 HVAC schedule definition		37	Photovoltaic plant	
5 Automatically shut off air conditioning or heating when a monitored door or		38	Small wind turbine	
6 Substitution of doors		39	Micro hydropower	
7 Substitution of windows		40	Capacitive power factor correction	
8 Air curtains		41	Building Energy Management System	
9 Thermal insulation of building envelope		42	Substitution of hydraulic motors with electric motors in elevators	
20 Installation of sun shading devices		43	Substitution of conventional pumps with high efficiency pumps	
1 Improve solar factor		44	Implementation of Energy Star procedure in computers	
22 Substitution of conventional boiler with condensing boiler		45	Substitution of conventional computer monitors with TFT	
23 Substitution of the boiler burner		46	Substitution of conventional appliances with efficient appliances	
VALIDATE DEFAULT MEASURES			CANCEL	

THE PROCESS

Identification and calculation of EE and RES measures

Each EE and RES Measure calculation is based on the data provided by the auditor

Measure n.º	Tit	Crite	erion 1	
9	Thermostatic valves for radiators	5	No	
			//	
Gas	Heating 1	1,500,000	kWh/year	34%
Electricity	Heating 2	456,000	kWh/year	10%
Electricity	Cooling	500,000	kWh/year	11%

Heating system	Number of radiators	Current consumption (kWh/year)		Introduce TRV's?		Number of TRV's to be installed	TRV unitary cost (€)
Heating system 1	75	1,500,	00.00		Yes	75	128
		1,500	0,000				

Total cost (€)	t New New consumption (installed) (kWh) (total) (kWh)		Savings (kWh/year)	Savings (€)	Simple payback time (years)
9,600	1,425,000	1,425,000	75,000	1,875	5.1
9,600	1,425,000	1,425,000	75,000	1,875	5.1

THE PROCESS

Identification and calculation of EE and RES measures

Each EE and RES Measure can be implemented for the whole or only a part of its respective system / energy use

Measure n.º	Т	itle		Criterion 1
9	Thermostatic valves for radiator	rs	No	
Gas	Heating 1	1,500,000	kWh/year	34%
Electricity	Heating 2	456,000	kWh/year	10%
Electricity	Cooling	500,000	kWh/year	11%

Heating system	Number of radiators	Current consumption (kWh/year)
Heating system 1	75	1,500,000.00
		1,500,000

				1870	
Number of TRV's to be installed	TRV unitary cost (€)	Total cost (€)	New consumption (installed) (kWh)	New consumption (total) (kWh)	Savings (kWh/year)
50	50 128		950,000	1,450,000	50,000
		6,400	950,000	1,450,000	50,000

THE PROCESS

Identification and calculation of EE and RES measures

Each EE and RES Measure calculation is based on the data provided by the auditor

Measure	e n.º	Title		Criterion 1
9	Thermostatic valves	s for radiators	No	0
			1	//
	Heating*	Gas		//
	Cooling*	Electricity	Description	Heating 1
	EDC DECOMME	NDATION SHEET	Production type*	Normal boiler
		ncy Measure 9	Number of boilers (or other heating equipment)*	5
	Ellergy Ellicie	ricy ivieasure 9	Output power boiler 1 (kW)*	125
	The amount of the con-	h f distant	Output power boiler 2 (kW)*	
	i nermostatic va	lves for radiators	Output power boiler 3 (kW)*	
-			Output power boiler 4 (kW)*	
Meas	sure automatically identified? YE	S	Input power boiler 1 (kW)*	140
Re	Building system link: Hear commendation criterion type: No TRV's Number of possible criteria: 1	ting		
	Number of criteria met:		Emission type*	Wet radiators
	Moogur	e criteria	Number of emitters*	75
C	Priterion 1: No Thermostatic Radiator Valve		Criterion met? Yes	
Number of	TRV's	0		If TRV's present

MEASURES

Energy Use	No.	Title
	1	Substitution of conventional lamps
Lighting	2	Replacement of lamps ballast
Lighting (5)	3	Occupancy and presence sensors
(5)	4	Photocell to dim luminous flux based on natural light
	5	Occupancy and presence sensors combined with photocell
	6	Substitution of a low efficiency chiller with inverter chiller
	7	Substitution of a low efficiency heat pumps with high efficiency
	8	Freecooling system
	9	Thermostatic valves for radiators
	10	Variable frequency drives for air handling units by CO2 sensors or occupancy sensors
	11	Variable frequency drives for extraction vents controlled by CO2 sensors or occupancy sensors
	12	Variable frequency drives for air handling units and extraction vents controlled by CO2 sensors or occupancy
		sensors
	13	Installation of biomass boiler for heating
	14	HVAC schedule definition
HVAC (20)	15	Automatically shut off air conditioning or heating when a monitored door or window remains open for a period of time
	16	Substitution of doors
	17	Substitution of windows
	18	Air curtains
	19	Thermal insulation of building envelope
	20	Installation of sun shading devices
	21	Improve solar factor
	22	Substitution of conventional boiler with condensing boiler
	23	Substitution of the boiler burner
	24	Pipework and boiler insulation
	25	Variable frequency drives for pumps

MEASURES

Energy Use	No.	Title					
	26	Heat recovery systems					
	27	Water saving aerators					
	28	Swimming pool heat cover					
HW	29	Substitution or implementation of heat exchanger					
(8)	30	Substitution of conventional boiler with condensing boiler					
	31	Substitution of the boiler burner					
	32	Pipework and boiler insulation					
	33	Variable frequency drives for pumps					
	34	Micro Cogeneration					
Reneweble	35	Geothermal heat pump					
energy	36	Solar thermal plant					
sources	37	Photovoltaic plant					
(6)	38	Small wind turbine					
	39	Micro hydropower					
	40	Capacitive power factor correction					
	41	Building Energy Management System					
Others	42	Substitution of hydraulic motors with electric motors in elevators					
(7)	43	Substitution of conventional pumps with high efficiency pumps					
	44	Implementation of Energy Star procedure in computers					
	45	Substitution of conventional computer monitors with TFT					
	46	Substitution of conventional appliances with efficient appliances					
All (1)	47	Operation times redefinition					

THE PROCESS: SUMMARY

Measure Generation

GR Tool Calculates the EE Measures

Measure Transfer

GR Tool generates one Financial Tool per Measure or Group of Measures GR Tool transfers Measure Data to the Financial Tool

Iterative Financial Calculation

Each copy of the Financial Tool calculates its own set of measures

GR Tool extracts results from all copies of the Financial Tool and presents six top results

INTERFACE

DATA INPUT

Yellow cells: User input required Green cells: GREPCon tool output

PROJECT GENERAL DATA

PROJECT SPECIFIC DATA

Project indexes		Financial project data input				Income & expenses (€)		
Macroeconomic variables		(12) Energy saving measures (ESM) investment	€	450.000		Annual income	€	150.000
Energy inflation rate	1,0%	(13) % of additional expenses		0%	(23)	Energy savings	€	145.000
General inflation rate	0,3%	(14) % of Grant (subsidies)		0%	(24)	Energy production	€	2.000
Euribor	0,1%	Total investment amount	€	500.000	(25)	Water savings	€	1.000
Spread	5,0%	(15) % debt		50%	(26)	Carbon credits trading	€	1.000
Interest rate	5,1%	% equity		50%	(27)	O&M savings	€	1.000
Loan formalisation fee	0,5%	Debt	€	250.000				
EBT tax rate	25%	Equity	€	250.000		Annual expenses	€	30.000
Bank Ioan repayment term (years)	9	Grant	€	-	(28)	Energy supply	€	10.500
		(16) K asset (required return)		9%	(29)	O&M	€	19.500
EPC features		(17) K equity (required return)		10%				
Overhead	5,0%	(18) % of investment subject to depreciation		100%		Other investment costs	€	50.000
Client shared savings (%)	5,0%	Investment subject to depreciation	€	500.000	(30)	ESCO expenses	€	40.000
EPC project duration (years)	10	(19) Working capital requirements (% of income)		10,0%	(31)	Owner expenses	€	10.000
EPC Ioan repayment term (years)	7	(20) EPC depreciation period (years)		10				
		(21) Asset depreciation period (years)		20				
		(22) ESM project horizon (years)		20				

FINANCIAL TOOL SCENARIOS

FINANCIAL TOOL SCENARIOS

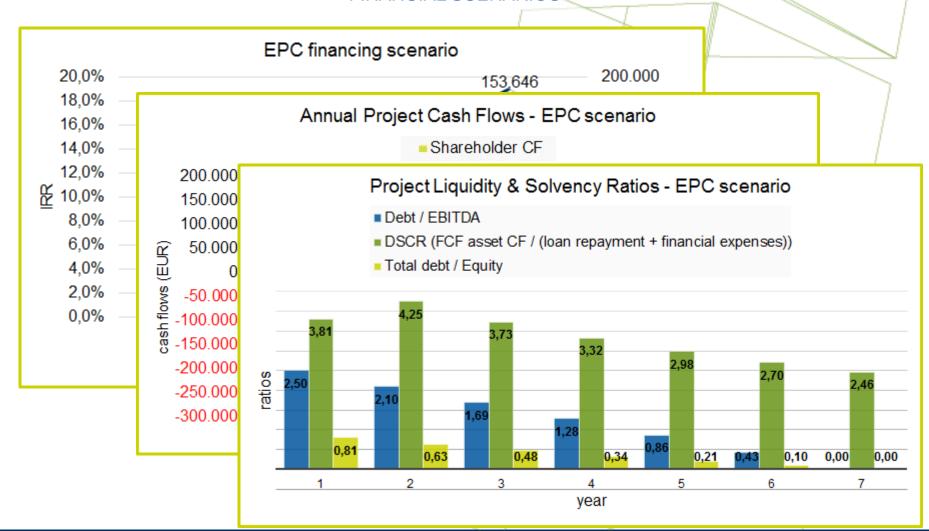
EPC project

the project is funded or participated by an Energy Performance Contract (EPC), which is an alternative financing mechanism designed to accelerate investment in cost effective energy savings. In this scenario, energy saving benefits can be shared with the client

Client financing through a loan

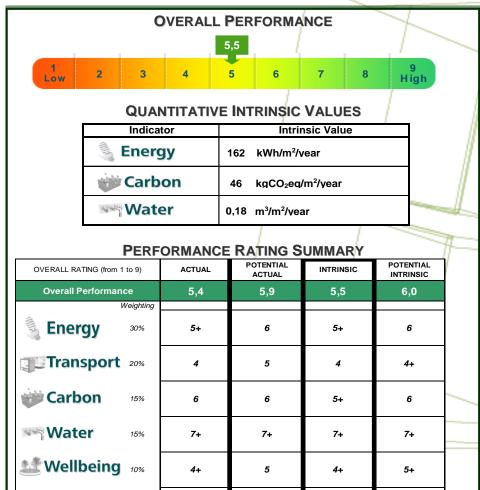
is the typical case of financing a project through a loan between the client and the bank directly

100% equity (no financing)


when the client decides to implement the project through own funds.

www.trustepc.eu

FINANCIAL SCENARIOS



FINANCIAL ASSESMENT

Scenario	Case	IRR¹	NPV² (€)	Discounted Payback (years)	Minimum DSCR ³	Average DSCR ³	Negative FCF ⁴ (years)	Project rating
	Worst	5,2%	-67.005	9,0	1,7	3,2	0	
EPC financing	Base	12,6%	40.055	8,0	2,5	3,3	0	В
	Best	19,0%	153.646	6,0	3,2	3,6	0	
Client	Worst	18,9%	204.619	6,0	2,9	8,0	0	
financing	Base	25,9%	427.409	5,0	4,2	6,9	0	Α
illiancing	Best	31,6%	717.938	4,0	6,0	6,8	0	
Project /1009/	Worst	14,4%	154.885	7,0	-	-	0	
Project (100%	Base	18,8%	367.910	6,0	-	-	0	Α
equity)	Best	22,8%	648.995	5,0	-	-	0	

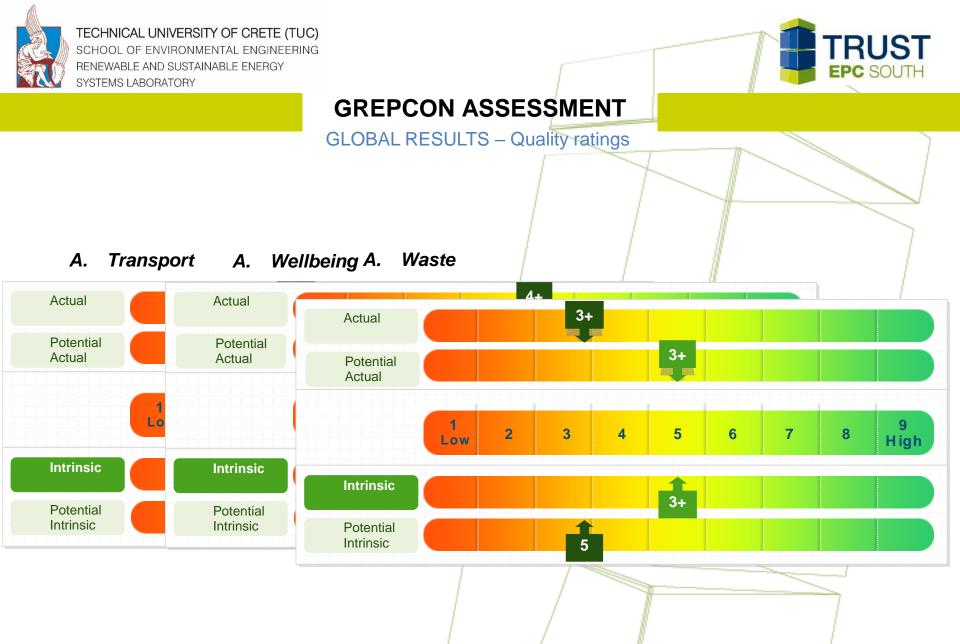
GLOBAL RESULTS

3+

3+

5

3+


Waste

GLOBAL RESULTS – Quality ratings

A. Water A. Carbon (energy related CO₂ equivalent emissions)

GLOBAL RESULTS

Indicator	Improvement Potential: Intrinsic Performance		
	Rec1: Substitution of conventional lamps		
Energy	Rec3: Occupancy and presence sensors		
	Rec25: Variable frequency drives for pumps		
Transport	To reduce the number of parking places		
Carbon	Recommendations to improve carbon performance are shown in the		
Carbon	Energy section		
Water	None		
	Replacement of standard ballasts by high frequency or electronic		
Mollhaing	ballasts		
Wellbeing	Establishment of zoned controls		
	Establishment of disabled facilities		
Waste	 Introduction of clearly labelled individual bulk recycling containers 		

No.	Energy saving measures to be implemented	Estimated Savings (kWh/year)	Estimated investments (€)	Estimated Payback
1	Thermostatic valves for radiators	35.030	6.300	< 3 years
2	Occupancy and presence sensors	32.760	9.357	< 4 years /
3	Variable frequency drives for pumps - HVAC	16.450	4.200	< 4 years

PROJECT RATING

GREPCon PROJECT RATING

XXX

Energy Performance Contract Potential

Financial savings: 241.609 €/year

Energy savings: 1.990.560 kWh/year

Energy savings percentage:

23,62 %

Carbon savings: 682.501 kgCO₂/year

Investment: 1.234.660 €

Equity percentage: 20 %

IRR: 29,0 %

NPV: **260.727** €

avg. DSCR: 1,9

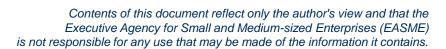
min. DSCR: 1,4

Discounted payback: 4 years

LABEL	DESCRIPTION		
A	High Profitability, low likelihood of bad performance, very robust structure, short payback time, with a high level of security in the loan		
В	Medium-High Profitability, medium-low likelihood of bad performance, medium-short payback time, with a medium-high level of security in the loan		
С	Medium Profitability, medium likelihood of bad performance, medium payback time, with a medium level of security in the financing		
D	Medium-Low Profitability, medium-high likelihood of bad performance, medium-long payback time, with a medium-low level of security in the financing		
	Low Profitability, high likelihood of bad performance, long payback time, with a low level of security in the financing		

БЛАГОДАРЯ ТИ!

For further information please contact:


Professor Theocharis Tsoutsos

Director, Renewable and Sustainable Energy Systems Lab

Technical University of Crete

theocharis.tsoutsos@enveng.tuc.gr

