

Business profile in European market

Mitsubishi Electric Europe

Transportation Systems

Jun. 2025

Mitsubishi Electric Europe Corporate Office (Uxbridge, UK)

President & CEO	Kazuhiko Tamura
Established	June, 1996
Net sales	EUR 4,113.5M
Paid-in capital	EUR 100.6M
Total assets	EUR 2,477.0M
Employees	3,827
	* As of Morah 2025

* As of March 2025

Mitsubishi Electric Europe B.V. (MEU) operates on the corporate principle of contributing to creating a vibrant and affluent society by enhancing its technologies, services, and creative powers, as a leader in the manufacture and sales of electric and electronic equipment used in Energy and Electric Systems, Industrial Automation, Information and Communication Systems, Electronic Devices, and Home Appliances.

1-2

Mitsubishi Electric Europe: products & services lineup

Living Environment Systems

- RAC (Room Air Conditioner)
- PAC (Packaged Air Conditioner)
- VRF (Virtual Routing and Forwarding)
- Ventilation
- Air To Water (Heat Pump Boiler)
- Chiller

- Lift
- Escalator
- Modernization

- Starter Motor
- Alternator
- Engine Control Unit
- Car Navigation System
- xEV (Integrated Starter Generator)

Power Systems

Transmission & Distribution

STATCOM (STATic Synchronous

- HVDC (High-Voltage Direct Current)

COMpensator)

- ADAS (DMS, HD-L)

- Controller (PLC, CNC)
- Drive Product (Servo, Inverter)
- Visualization (HMI, SCADA)
- LVS (Low Voltage Switchgear)
- Mechatronics (Robot, LPM, EDM)
- UPS/ CIS (Contact Image Sensor)

Traction systems (TM, INV, CI)

HVAC (for railway application)

Main Transformer

APS

TCMS

- Power Device (IGBT Module, IPM)
- High Frequency Module
- Optical Module

- Defense System
 - High Precision Positioning System
 - Mobile Mapping System

CONFIDENTIAL

Mitsubishi Electric Corporation is on-board and wayside system integrator and manufactures. We are trying to build a better railway system.

Supply record to Bulgaria

Project	Qty	Delivered Products	Manufacturer
Sofia Metro	114 cars	APS	MEDCOM
Sofia Tram	63 cars	Traction Inverter, APS	MEDCOM

<Sofia Metro>

APS

Traction Inverter

Regenerative Energy Management Solutions in Railways for SUMP-<u>S</u>ustainable <u>U</u>rban <u>M</u>obility <u>P</u>lan

Transportation Systems

Reduction of investment in the power distribution

- \checkmark No need to strengthen the power grid
- ✓ Increasing on-ground facilities capacity

Reduction of CO₂ emissions

- Replacement oil appliance with electric vehicles
 - ✓ Effective use of regenerative power

"Innovation collaboration" confirms feasibility of electrification by S-EIV.

метрополитен" еад

Adding Value to the Railroad

MITSUBISHI ELECTRIC Expansion of energy solutions

3-1

S-EIV Use Case

S-EIV is suitable for the use two cases.

Use case1 Energy Saving

- ✓ The surplus regenerative energy generated when a train brakes is supplied to the electrical equipment in the station building.
- ✓ The energy can be effectively used for station lighting, air conditioning, elevators, etc.

S-EIV supply power from overhead line

to low voltage AC line.

Use case2 Increasing on-ground facilities capacity without strengthening distribution grid

 ✓ S-EIV can supply continuous power from sub-station to on-ground facilities via DC1500V overhead line.

Increasing capacity of on-ground facilities or adding new equipment such as EV charger without changing or adding high voltage AC line and transformers.

3-2

Features of S-EIV

Reliable and stable operations

- Mote than 10 years operation record (since 2014 for Tokyo Metro)
- In total 48 units has been supplied

IP54 sealing rating

- Allowing indoor and outdoor installation
- Integrated in cubicle structure

[Size] H:2180 × D:1169 × W:1680mm [Weight] Approx. 2000kg

Latest power electronics technology

- SiC(silicon carbide) Modules are used
- Reduce the losses, achieved compactness
- Can be installed in limited space

S-EIV installed example (at the end of a station platform)

Energy saving effects

S-EIV has been installed in Hong-Kong since 2021. The introduction of S-EIV has shown positive results in terms of its effectiveness.

<Source: Sustainable Report from MTR>

MTR	Installation of Station Energy Saving Inverter (S-EIV) at Hong Kong University Station (HKU) and Lai King Traction Substation (LKT).	Benefits from S-EIV in 2 stations
Description of Investment	The S-EIV converts the regenerative energy produced by the train braking system into 415V low-voltage alternative current electricity that can be consumed by the station facilities, thereby increasing the utilization of regenerative energy and reducing external electricity consumption.	by 3 S-EIVs :
	At Hong Kong University Station, the installation of the S-EIV also helps to decelerate trains more effectively and improve stopping accuracy at the West Island Line stations.	
	Annual savings estimated in HKU station: 170MWh By 1 S-EIV	579 MWh /year
Beneficial Environmental Impact Estimate	Annual savings estimated in LKT substation: 409MWh Total electricity saved per annum: 579MWh	115,800 EUR /year(*)
Facilitation Officer (CUC Facilitation	310 tonnes of CO₂ equivalent based on the average CO ₂ e emission factors of 0.535kgCO ₂ e/ kWh for CLP ¹ and HK Electric ² at total investment amount.	310 tonnes of Co2-equivalent /year
Equivalent Carbon Offset (GHG Emission Avoided in tonnes CO ₂ e)	270 tonnes of CO₂ equivalent based on the average CO ₂ e emission factors of 0.535kgCO ₂ e/ kWh for CLP ¹ and HK Electric ² at investment amount funded by sustainable finance.	
Carbon Offset per Million Investment (HK\$)	37.26 tonnes	*200.00 EUR/MWh

We are developing a next generation model, and this presentation is based on it.

3-3 ENERGY MANAGEMENT SYSTEM (EMS) SOLUTION

Furtherer saving and utilizing regenerative power Local EMS solution

Managing and operating the power balance of S-EIV & power storage devices, renewable power generation, and EV charging/discharging equipment to streamline power operation

MITSUBISH ELECTRIC Changes for the Better